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The spherical  flow of a gas into a space where the p ressu re  is not zero is studied on the basis  of the 
Nav ie r -S tokes  equations. The constra int  problem is solved by the relaxation method. This method enables 
one to analyze the effects of the Reynolds number, of the p res su re  ratio, of the sonic sphere to surrounding space, 
and also of the tempera ture  in the surrounding space on the distribution of pa ramete r s  within the flow r e -  
gion. It is shown, in par t icular ,  that, for a constant Reynolds number and variable p ressu re  ratio, the ex-  
pansion front of a viscous heat-conducting gas in vacuum will be the envelope of the pa ramete r  d is t r ibu-  
tions within the supersonic region.  The resul ts  of these calculations are compared with those of other  
authors.  

The effect of v iscosi ty  and thermal  conductivity on the spherical  flow of a gas into occupied space 
was analyzed in severa l  theoret ical  studies.  In most  of them the method of a small  pa ramete r  [1, 2] was 
applied to solve the N a v i e r - S t o k e s  equations. With this method it was possible to pe r fo rm a qualitative 
and, in some cases ,  also a quantitative analysis for large  Reynolds numbers  R , .  

The problems of a viscous heat-conducting gas flowing into vacuum were studied by Ladyzhenskii  [3]. 

Apparently,  the f i rs t  complete enough solution to the problem was ar r ived  at by Gusev and Zhbakova 
[4]. The idea behind the method used by these authors was to convert  the constraint  problem into a Cauchy 
problem.  The initial conditions were found by a ser ies  expansion around a point at infinity r = ~o and a sub-  
sequent integrat ion in the ups t ream direct ion.  

Obviously, this method imposes  no res t r ic t ions  on the values of the R ,  number or  the p re s su re  ratio 
p . / p r 1 6 2  However, every  se r i e s  expansion which is specific in t e rms  of the coefficients establishes a defin- 
ite relat ion between R ,  and p , / p ~ ,  so that calculation, e .g., for a constant R ,  and variable p . / p ~ ,  will 
require  different se r ies  expansions with the choice of coefficients for every  p . / p ~  not obvious. It now be-  
comes difficult to analyze the effect of the Reynolds number and that of the p ressu re  rat io on the flow s t ruc -  
ture .  

In this 'article the authors propose another approach: when a convers ion is made into thermodynamic 
var iables ,  that peculiar  situation at r - - ~  does not ar ise ,  and the constra int  problem can be solved by con-  
ventional methods,  e.g., by the relaxation method. The analysis of the flow pattern is hereby considerably 
simplified.  

As in most  preceding studies, the analysis is per formed for  the case  where the limiting p re s su re  in 
the gas is much higher  than the p res su re  in the surrounding space.  This case is the most  interest ing one 
for both theoret ical  and pract ical  considerat ions [2, 4]. 

The spherical  expansion of a gas at a high p res su re  ratio can be real ized in pract ice  [5], but not suf-  
ficient experimental  data are  available yet for a compar ison with theoret ical  resul ts .  

Statement of the Prob lem.  The spherical  flow of a viscous heat-conducting gas is descr ibed by the 
sys tem of equations: 

vu ~ ;  + ~I.~ d-7 -- R~- [--3- ~ LT~- ~ (r~u) -- -7- ~-;;| (1) 

Novosibirsk.  Trans la ted  from Zhurnal Prikladnoi  Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 122- 
126, May-June,  1971. Original ar t ic le  submitted March 2, 1970. 
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~T ~ ~ ~• ~ ~ ( ~ , , - ~  
~u-~;--(~--~)~ dr --~, [ ~ - Y ~ ;  ~ r  --~(~--t)~M2 ~ --\-~ ] JI (2) 

pur2 = ~_, p = "-~- pT (3) 

Here a is the Prandt l  number and ~ = tz (T) is the viscosi ty  as some function of t empera ture .  
flow pa ramete r s  in (1), (2), and (3) are dimensionless quantities: 

r ~ u' T '  p' p '  
r =  r--- 7- U ~ ,  . ' u . '  T = - T . f ,  9 = ~ ,  P = p . ' u . ' Z  

~t p t u p r 
= ~ . ,  R .  - -  P* . r ,  M .  - -  u . '  ~ . 'Cp '  

' ~ t , '  ' ] / - - ; ' / ~ ' T ,  ~ ' ~ = k , '  

The 

(4) 

The Prandt l  number a and the ratio of specific heats y are assumed constant.  

Let the gas flow into a space where the p ressu re  is not zero and the tempera ture  is finite. There  al-  
ways exists a surface here with some r = r I behind which the gas flow is ent i re ly subsonic:  M] << 1. It fol-  
lows f rom a considerat ion of the heat t r ans fe r  equation (2) for r > r 1 that the condition of a finite t empera -  
ture at r ~  oo, i .e. ,  d T / d r  = 0, alone is not sufficient for a spherical  flow but that the tempera ture  at infinity 
must  be specified. Two thermodynamic pa ramete r s  may thus have a rb i t ra r i ly  assigned values at infinity, 
i.e., in the surrounding space.  

The state pa ramete r s  of the gas may also have specified values at the source surface.  With R .  and 
M.  given, the flow rate and r .  will then be defined. 

It is not convenient to use the constraint  with respect  to velocity, since u(:o) is a singular point [2]. 

The boundary conditions will be stated as 

p =  t ,  T ~  1 for r =  1, p - ~ p c r  T--~ Tm for r - - * o o  (5)  

Method of Solution. After  eliminating the velocity and the p re s su re  from Eqs. (1), (2), and (3), and 
performing the r = 1 + a tan (~2~y) t ransformat ion,  we will rewrite  the sys tem of equations in a form con-  
venient for  subsequent l inearizat ion 

d~p dp 
AI ~ y y  + B1 ~ -  + Clp = DI  

d~T d T  

p = i , T = l  for y = 0 ,  p = p o o ,  T =  T ~  for g = i  

(6) 

(7) 

Here (~ is some constant and Ak, Bk, Ck, and D k are factors  which remain  after extract ion of the 
l inear  par t  and which general ly depend on y, p, T, d p / d y ,  dT/dy,  and R . ,  a, M.,  y, ~. 

The problem (6), (7) has been solved by the relaxation method according to an implicit  procedure .  
The space grid was uniform with respect  to y, with N subdivisions and the interval h. 

The l inear ized system 

where 

j. { 0p '\j+l / 0~p \ j+ l  

�9 {OT~J+I__  . / 6 ~ T ' , j + I  ~ . / O T h J + I  ] j+l " 

p0 ] = ~, pN j = p~ ,  To] = l ,  T N] = T ~  

{ Ol l~+i fi+i /i+i -- 2i. i + ~-i :+i ~-i 
\ ' ~ - ]  i T '  \ a y  ~ ] i = h ~ ' ~ 6 y /  { - -  2h 

was solved for each j + 1 i terat ion by the method of success ive  approximations [6, 7]. The magnitude of 
the i teration pa ramete r  ~- remained unchanged during the relaxation p rocess .  
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T h e  i n i t i a l  a p p r o x i m a t i o n  p i  ~ = go 1 (i), T i  ~ = gP2 (i), a s  a r u l e ,  w a s  c h o s e n  i n  t h e  f o l l o w i n g  m a n n e r :  t h e  

d e n s i t y  f o r  0 -< i -< i 0 w a s  c a l c u l a t e d  f r o m  t h e  e q u a t i o n s  o f  i s e n t r o p y  a n d  f o r  i 0 < i -< N w a s  a s s u m e d  e q u a l  

t o  p ~  (i 0 i s  t h e  l a s t  p o i n t  a t  w h i c h  t h e  d e n s i t y  c o r r e s p o n d i n g  t o  i s e n t r o p i c  e x p a n s i o n  i s  n o t  l o w e r  t h a n  P~o), 

Ti ~ = T~r --  (T -- t) / 2 (pi~ ~ 

f o r  

O < ~ < N  
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The c o m p u t a t i o n  was  t e r m i n a t e d  a f t e r  

~ 1 (0 In P'/J+l ~ {0 lnT ~J+l I] 
max~ L I \ Ot / i \ ~ /  i I J ~ so 

had been  r e a c h e d .  

The  v a l u e s  of  ~ ,  h,  and  e 0 w e r e  c h o s e n  by c o n t r o l  c a l c u l a t i o n s .  Wi th  R ,  = 100 and p , / P ~ o  = 92.7, fo r  
e x a m p l e ,  h = 2 �9 10 -3, e 0 = 2 �9 10 -3, T = 5 �9 10 -2, and the  so lu t i on  s t a b i l i z e d  a f t e r  500 i t e r a t i o n s .  

D i s c u s s i o n  o f  R e s u l t s .  The  fo l lowing  s t r u c t u r e  e v o l v e s  d u r i n g  the  s p h e r i c a l  f low of an i d e a l  gas  in to  
a s p a c e  w h e r e  the  p r e s s u r e  i s  not  z e r o ,  P~o < P0* : whi le  expand ing  i s e n t r o p i c a l l y f r o m  s o m e  son ic  o r  s u p e r -  
son ic  s u r f a c e ,  the  gas  o v e r e x p a n d s  un t i l  the  p r e s s u r e  b e c o m e s  l o w e r  than  Poo. A f t e r  tha t ,  t h e r e  t a k e s  p l a c e  
a l i m i t i n g  of the  g a s  in a s h o c k  wave  m a n n e r  a c c o m p a n i e d  by  a r e c o v e r y  p r e s s u r e  and then a n o n i s e n t r o p i c -  
a l  l i m i t i n g  down to  the  p a r a m e t e r s  of  the  o c c u p i e d  s p a c e .  The  p o s i t i o n  of  the  shock  wave  i s  d e t e r m i n e d  
f r o m  the r a t i o  p , / P ~ o .  We note  tha t  the  i d e a l  so lu t i on  can  be  ob t a ined  only  when Too = TO, .  

In  F i g s .  1, 2, and 3 a r e  shown t y p i c a l  c a l c u l a t e d  r e s u l t s  i l l u s t r a t i n g  the  f low of  a v i s c o u s  h e a t - c o n -  
duc t ing  gas  f r o m  a son ic  s u r f a c e  M ,  = 1. The  t e m p e r a t u r e  de pe nde nc e  of v i s c o s i t y  was  accoun ted  fo r  by  
u s i n g  the S u t h e r l a n d  equa t ion :  

T ~ - T s  

C a l c u l a t i o n s  w e r e  m a d e  fo r  a i r  (y  = 1.4, T~ = 104~ wi th  a t e m p e r a t u r e  l i m i t i n g  at the  son ic  s u r f a c e  
T'0, = 293OK. 

The  d i s t r i b u t i o n  of f low p a r a m e t e r s  p, T,  and M fo r  p , / P ~ o  = 109, T ~ / T ,  = 1.2, and cr = 0.7 i s  shown 
in F i g .  1. (Curves  1, 2, and 3 c o r r e s p o n d  to R ,  = 50, 100, and 200; the  d a s h e d  c u r v e  r e p r e s e n t s  the  s o l u -  
t ion  fo r  an i d e a l  gas . )  B e s i d e s  the  ev iden t  r e g u l a r i t i e s ,  one a l so  ought  to note  tha t  the  d e n s i t y  c u r v e s  i n t e r -  
s e c t  wi th in  a s m a l l  r e g i o n  a round  the  poin t  c o r r e s p o n d i n g  to the  d e n s i t y  va lue  beh ind  the  shock  wave  in the  
i d e a l i z e d  c a s e .  

The d e p a r t u r e  of the  p a r a m e t e r s  f r o m  t h e i r  i s e n t r o p i c  d i s t r i b u t i o n s  beg in s  p r a c t i c a l l y  at the son ic  
s u r f a c e .  

C a l c u l a t i o n s  m a d e  fo r  c o n s t a n t  R ,  n u m b e r s  and v a r i a b l e  p , / p ~  r a t i o s  ( s p e c i f i c a l l y  fo r  R ,  = 161.83, 
T ~ o / T ,  = 1.2, a = 0.7 shown in F i g .  2, w h e r e  c u r v e s  1, 2, 3, and 4 c o r r e s p o n d  to p , / P o o  = 6.94, 27.8, 92.7, 
and 278) i n d i c a t e  tha t  the d e p a r t u r e  f r o m  i s e n t r o p i c  cond i t ions  in m o s t  of  the  s u p e r s o n i c  r e g i o n  i s  not  r e -  
l a t e d  to  the  p o s i t i o n  of  the  shock  wave ,  but  i s  d e t e r m i n e d  only  by  the R ,  n u m b e r ,  i . e . ,  tha t  the  n a t u r a l  e f -  
f ec t  of the  shock  wave  on the  u p s t r e a m  flow i s  l o c a l i z e d .  (The d a s h e d  c u r v e s  in F i g .  2 r e p r e s e n t  the  s o l u -  
t ion  fo r  an i d e a l  g a s ,  the  s m a l l  c i r c l e s  m a r k  the  po in t s  d e t e r m i n e d  in [4] .) 

The  d i s t a n c e  f r o m  the  i d e a l  p o s i t i o n  of the shock  wave  to  the po in t  of l o w e s t  t e m p e r a t u r e  wi l l  be  r e -  
f e r r e d  to the  f r e e  pa th  l eng th  wi th in  i t .  In the  m o d e s  ana lyzed  so f a r  the  r a t i o  of the  two l eng ths  h a s  b e e n  
on the o r d e r  of 6-9  and has  t ended  to i n c r e a s e  wi th  h i g h e r  Mach  n u m b e r s  " a he a d"  of  the  shock  wave .  Th i s  
r a t i o  m a y ,  in  a c e r t a i n  way ,  s e r v e  as  a c h a r a c t e r i z a t i o n  of  the  shock  wave  width  in t e r m s  of f r e e  "conf luen t  
f low" l e n g t h s .  

The  e f fec t  of the  shock  wave  on the  u p s t r e a m  flow i s  e v i d e n t l y  a l so  d e t e r m i n e d  by  the  va lue  of the  
n u m b e r .  Th i s  can  be  s e e n  in  F i g .  3, w h e r e  c u r v e s  1, 2, and 3 c o r r e s p o n d  to f low n u m b e r s  cr = 1.0, 0.7, and 
0.5, r e s p e c t i v e l y .  C a l c u l a t i o n s  w e r e  m a d e  h e r e  fo r  R ,  = 100, T ~ / T ,  = 1.2, p , / P o o  = 92.7.  

Wi th  a c o n s t a n t  ~ ,  then ,  the  d i s t r i b u t i o n  of p a r a m e t e r s  wi th in  the  r e g i o n  a d j a c e n t  to  the  s o n i c  s p h e r e  
and bounded  fo r  e v e r y  va lue  of  p , / P o o  by  the e f fec t  of the  shock  wave  s e t t i n g  in  i s ,  in  t h i s  way,  d e t e r m i n e d  
only by  the  R ,  n u m b e r  and d o e s  not  depend  on the  p r e s s u r e  in the  s u r r o u n d i n g  s p a c e .  The  r e s u l t s  shown 
in F i g .  4 (where  c u r v e s  1, 2, and 3 c o r r e s p o n d  to T ~ / T ,  = 1.2, 1.0, and 0.4, r e s p e c t i v e l y ,  and w h e r e  c a l c u -  
l a t i o n s  have  been  m a d e  fo r  R �9 = 100, p */Poo = 109, a = 0.7) i n d i c a t e  tha t  a l so  the  e f f ec t  of  t e m p e r a t u r e  in  
the  s u r r o u n d i n g  s p a c e  does  not  ex t end  to t h i s  r e g i o n .  One m a y  a s s u m e  tha t  t h i s  s i t u a t i o n  i s  m a i n t a i n e d  at  
P~o ~ 0 (p , / p  ~ : o  f o r  R ,  = cons t ) .  The  e n v e l o p e s  of the  p a r a m e t e r  d i s t r i b u t i o n  c u r v e s  ( cu rves  5 in F i g .  2) 
w i l l  t hen  c o r r e s p o n d  to the  i n i t i a l  p h a s e  of e x p a n s i o n  of a v i s c o u s  h e a t - c o n d u c t i n g  gas  into v a c u u m .  
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The comm en t  concerning the t e m p e r a t u r e  is of essent ia l  s ignif icance,  genera l ly  speaking,  because  
during the flow into vacuum with r ~  co the assumpt ion  of no momentum t r a n s f e r  and no heat  flowinto the 
surrounding medium can be made only if  the re  is a t he rma l  in terac t ion  between gas  molecu les ,  and then T~ 
may  not be equal to T o . .  Indeed, it follows f rom the analysis  in [3] that during a spher ica l  flow into vacuum 
with r - *  oo one has u -*  0 and, consequently,  T0~ -* T ~ .  Fo r  finite R * number s  the t e m p e r a t u r e  l imit ing in 
the flow region cannot be sustained,  and T0~o m a y  differ  f rom T o . ;  this las t  effect  is c l ea r ly  obse rved  in 
the example  of a cyl indr ica l  source  [8]. 

Calculat ions for  R .  = 161.83, for example ,  were  p e r f o r m e d  with p . / p ~  up to about 108, which a lmost  
co r r e sponds  to a flow into deep vacuum.  

The posi t ions of the envelopes  (they will be ca l led  cu rves  of viscous  expansion) a re  de te rmined  by the 
conditions on the sonic su r face  as well  as by the values  of the R .  and the (r number s .  The dependence on 
the a number  is ,  as Fig.  3 shows, r a t h e r  weak. 

Analogous cu rves  were  obtained e a r l i e r  in [2]. The fact  that the p a r a m e t e r  dis t r ibut ions within the 
region up to the shock wave do not depend on the conditions in the surrounding space  was not deduced f rom 
the analys is ,  however ,  but was s t ipulated in o rde r  to make  it poss ib le  to plot the ent i re  flow region.  

In extending the N a v i e r - S t o k e s  equations to a gas  flowing into vacuum, or  p rac t i ca l ly  into a space  
where  the p r e s s u r e  is ve ry  low, the question of t he i r  val idi ty he re  will na tura l ly  a r i s e .  This question has  
been t r ea t ed  thoroughly in [3]. 

The authors e x p r e s s  the i r  grat i tude to M. A. Gol 'dsht ik  and B. G. Kuznetsov for  valuable comment s .  
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